

Genetic relationship of greenschists and amphibolites in Veporicum of the Nízke Tatry Mts.

ŠTEFAN MÉRES¹ & DUŠAN HOVORKA²

¹Faculty of Natural Sciences, Comenius University, Department of Geochemistry, Mlynská dolina, 842 15 Bratislava

Abstract. Within the Nízke Tatry Mts. metabasites we have distinguished: (1) typical greenschists, and (2) diapthorites of the greenschists facies appearance. Majority of their bodies is located on tectonic zone between the Hron complex and the Jánov Grúň complex. From realized field as well as laboratory studies if follows that a part of the Jánov Grúň matabasites ranked till now among greenschists represents diaphorites of amphibolites. In the past they have been ranked to the Hron complex; at present we consider them to be member of the leptyno-amphibolite complex of the Western Carpathians.

Key words: amphibolites, greenschists, diapthorites, Veporic Unit, Western Carpathians

Introduction

In the Nizke Tatry Mts. Veporicum complex there are isolated bodies of greenschists and amphibolites. However, gradual transition between the amphibolites and greenschists may be observed frequently as well. This is the reason of different opinions on their genesis.

Some authors suggest common genesis of both meta-basic rock types and they classify these rocks within the Hron Complex (KLINEC, 1966), the metamorphism of which reached PT conditions of the amphibolite facies. The authors explained the different character of metamorphism as the result of progressive metamorphism of basic rocks, and they considered the greenschist to be diaphtorites of amphibolites.

Another opinion assumes different genesis of amphibolites and greenschists. The criteria for this are based on the different grade of metamorphism and geological position. The amphibolites are included into the Hron Complex and the greenschist into the low-metamorphic Janov grúň Formation. This opinion was accepted also by the authors of the latest geological map of this area (BIELY et al., 1992).

During a preliminary study of greenschists from the Janov grúň Fm. we obtained results which are not entirely consistent with the last mentioned conclusion.

Geology

The Janov grúň Formation (MIKO, 1981; MIKO & IVANIČKA, 1993) consists of chlorite-sericite phyllite, sericite-chlorite-albite phyllites, sericite-quartz phyllites, metamorphosed effusive rocks and volcaniclastics of rhyodacite to dacite composition, metadiabases and greenschists. Paleovolcanic rocks of the Janov grúň Fm. belong, according to MIKO (I.c.), into the spilite-diabase-keratophyre formation. The rocks of the Janov grúň Fm. were metamorphosed in the greenschist facies conditions (T = 340 - 370°C, P = 340-400 MPa, MIKO & KORIKOVSKY, 1994).

The presence of metamorphosed products of basic volcanism - greenschists - is typical for the lower part of the Janov grúň Fm. (MIKO, I.c., MIKO & IVANIČKA, I.c.). One of the largest bodies is lying 2.5 - 3 km ENE of Mýto pod Ďumbierom, on the western slopes of Priehybka (Fig. 1). This body and greenschist bodies in the Ždiarska Valley, NNW of Polomka and N of Závadka nad Hronom and Heľpa (marked in the geological map of BIELY et al., 1992) were the subject of our study.

Petrography

By a detailed field and thin section study, the following rocks may be distinguished among the meta-basic rocks of the studied bodies:

a) Typical greenschists. They are represented by fine-grained rocks of dark green colour, as a rule with well pronounced metamorphic foliation. Fine-augen structure is formed of characteristic tabular albite porphyroblasts. The rock matrix is formed predominantly of sub-microscopic chlorite aggregate. In the greenschists there are fine-grained titanite clusters, irregular grains of minerals of the clinozoisite-epidote group, carbonate nests, idioblastic ore minerals (magnetite, pyrite). Equigranular greenschists are sometimes characterised by a sub-microscopic grain-size. The locally present quartz is concentrated predominantly in small lenses. Such greenschist types are usually described as progressively metamorphosed volcanics/volcaniclastic material of basic volcanites.

²Faculty of Natural Sciences, Comenius University, Department of Mineralogy and Petrology, Mlynská dolina, 842 15 Bratislava

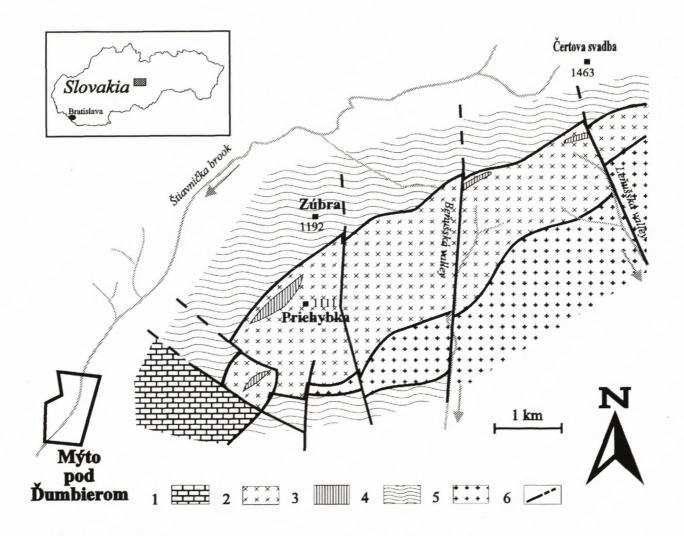


Fig. 1: Geological map of the western part of the Janov grúň Formation (simplified from MIKO and IVANIČKA 1993). 1 = Mesozoic; 2 = Jánov grúň Formation (phyllites, rhyodacites, dacites and their volcaniclastics); 3 = metadiabases and greenschists; 4 = Hron Complex (micaschists, amphibolites); 5 = biotite granitoids; 6 = tectonic boundaries

b) Diaphtorised amphibolites. They are fine-grained rocks, in which the predominant phase is green to greenish-brown amphibole with plan-parallel orientation. A characteristic feature are wholly or partly preserved (pseudomorphed by chlorite) porphyroblastic garnets. Plagioclases are strongly recrystallised into a fine-grained aggregate of white mica, albite, quartz, chlorite and clinozoisite. A characteristic metamorphic newly-formed mineral is chlorite. Rocks of this group bear frequently signs of faint banded texture, with alternating lighter and darker bands. This type of metabasic rocks occurs usually in the central part of the studied bodies.

Geochemistry

The aim of the preliminary geochemical study was to test on a limited number of samples the possibility of obtaining exact geochemical data necessary for the study of genesis of the problematic meta-basic rocks. Therefore, we focused on the determination of REE contents. Analytical determination of REE (carried out by the INAA method in the laboratories of MEGA, a.s., Stráž pod Ralskem, Czech Republic) is listed in Table 1.

From a comparison of REE contents in both end types it is obvious that there are no (or only negligible) differences between them (Tab. 1, Fig. 2). Both samples have low Σ REE, normalised REE curves are flat, similar to primitive basalt types.

Discussion and conclusions

If we would include all greenschists of the Nízke Tatry Mts. Veporicum unit into the Janov grúň Formation, we would be confronted with the following problems:

 the majority of larger bodies is situated in a tectonic zone between the Hron Complex and the Janov grúň Formation,

Tab. 1 REE contents (in ppm values) in the studied meta-basic rocks of the Nízke Tatry Mts. Veporicum.

	La	Се	Nd	Sm	Eu	Gd	Tb	Tm	Yb	Lu	ΣREE
G-3	5.80	14.80	11.00	4.30	1.40	5.00	1.05	0.54	4.30	0.75	48.94
G-4	5.80	14.90	12.50	4.10	1.25	5.10	0.99	0.60	3.80	0.55	49.59

Sample G-3 is a typical greenschist with augen structure. Predominant minerals are albite and chlorite, less abundant is quartz and carbonate.

Sample G -4 is diaphtorised garnet amphibolite. From minerals corresponding to PT conditions of the amphibolite facies, predominant are amphibole and plagioclase. Less abundant is garnet. The metamorphic assemblage of the amphibolite facies comprises 70% of the rock, the rest is a younger assemblage corresponding to PT conditions of the greenschist facies (albite, quartz, chlorite, sericite, epidote and carbonate).

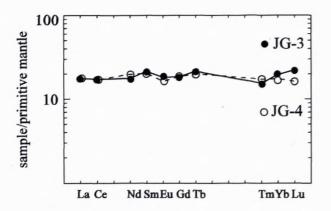


Fig. 2: REE contents in the studied metabasites, primitivemantle normalised (SUN 1982)

■ greenschist bodies, as indicated in the geological map (BIELY et al. 1992) north of Hel'pa, alternate with amphibolites of the Hron Complex. Such geological position is in our opinion not very probable. This is supported also by mutual transitions of greenschists and amphibolites, which may be observed in field outcrops. A younger mineral assemblage occurs in the amphibolites, corresponding to their recrystallisation in the same conditions as the metamorphism of greenschists.

REE contents in two samples of the studied meta-basic rocks suggests the following preliminary conclusions:

- a) the practically identical REE contents in the greenschist and diaphtorised garnet amphibolite indicate that the greenschists represents a totally diaphtorised amphibolite,
- b) the protolith of both greenschist and the diaphtorised garnet amphibolite were very probably the same rocks.
- REE appear to have been immobile during the diaphtoresis, which shows the suitability of their application in the detailed study of the genesis of greenschists and amphibolites,

d) low ΣREE and primitive character of REE distribution in both cases is practically identical with REE characteristics determined in amphibolites of the leptynoamphibolite complex in the Western Carpathians (LAC - HOVORKA et al. 1992, 1994, HOVORKA & MÉRES 1993, or "banded amphibolites" in the terminology of SPIŠIAK and PITOŇÁK 1992, JANÁK et al. 1993, or amphibolites of the Hron Complex, KLINEC 1966).

From the above facts it follows that a part of the metabasic rocks marked in the 1:50 000 geological map (BIELY et al., 1992) as greenschists of the Janov grúň Formation are diaphtorites of amphibolites. They were formerly assigned to the Hron Complex (KLINEC 1966), at present we classify them with the leptyno-amphibolite complex. These are most probably especially the greenschist bodies situated near the tectonic contact of the Hron Complex (LAC) and the Janov grúň Formation.

References

BIELY, A., BEŇUŠKA, P., BEZÁK, V., BUJNOVSKÝ, A., HALOUZKA, R., IVANIČKA, J., KOHÚT, M., KLINEC, A., LUKÁČIK, E., MAGLAY, J., MIKO, O., PULEC, M., PUTIŠ, M. & VOZÁR, J. 1992: Geol. mao of Nízke Tatry Mts. 1:50 000. Geol. úst. D. Štúra, Bratislava.

HOVORKA, D, MÉRES, Š. & IVAN, P., 1992: Pre-Alpine Western Carpathian Mts. Basement Complexes: Geochemistry, Petrology, Geodynamic Setting. Terra Nova, Abstract Supl., 2, 32, Oxford.

HOVORKA, D. & MÉRES, Š. 1993: Leptynitovo-amfibolitový komplex Západných Karpát: vystupovanie a litologická náplň. Mineralia slov., 25, 1, 1-9 (in Slovak, Engl. res.).

HOVORKA, D., MÉRES, Š., & IVAN, P. 1994: Pre-Alpine Western Carpathians Basement Complexes: Lithology and Geodynamic Setting. Mitt. Österr. Geol. Ges., 86, 33-44 Wien.

JANÁK, M., BEZÁK, V., BROSKA, I., FRITZ, H., KAHAN, Š., KOHÚT, M., NEUBAUER, F., O'BRIEN, P. J., ONSTOTT, T. C., REICHWALDER, P. & UHER, P. 1993: Deformation, metamorphism and granitoid magmatism in the Tatry Mts., (Central Western Carpathians, tatric unit): record of Variscan and Alpine orogeny. In: "Pre-Alpine Events in the Western Carpathians' Realm", (PITOŇÁK & SPIŠIAK Eds.), Excursion Guide, 51-61.

- KLINEC, A. 1966: K problémom stavby a vzniku veporského kryštalinika. Sbor. geol. Vied, Západ. Karpaty, 6, 7-28 (In Slovak).
- Міко, О. 1981: Srednepaleozojskaja vulkanogenno-osadočnaja tolšča Janovogo grunja v veporidnom kristallinike Nizkich Tatr. Geol. Zbor. Geol. carpath., 32, 4, 465-474 (In Slovak, Engl. res.).
- MIKO, O. & IVANIČKA, J. 1993: Formácia Janovho grúňa severovýchodne od Mýta pod Ďumbierom. Mineralia slov., 25, 4, 274-276.
- MIKO, O. & KORIKOVSKY, S. P. 1994: Metamorphism of the Jánov grúň lower Paleozoic volcano-sedimentary formation (Veporic unit, Western Carpathians). Geol. carpath., 45, 1, 57-65.
- SPIŠIAK, J. & PITOŇÁK, P. 1992: Banded amphibolic rocks Pre-Variscan Basement of the Western Carpathians? Terra Nova 4, Abstract supl., 2, 63.
- SUN, S. S. 1982: Chemical composition and origin of the Earth's primitive mantle, Geochimica et Cosmochimica Acta, 46, 179-192.